2. 基本操作 下面利用Excel 2000提供的方差分析:可重复双因素分析工具求解本例。具体操作步骤如下: 选择工具菜单中的数据分析命令,此时弹出数据分析对话框。 在分析工具列表框中,选方差分析:可重复双因素分析工具。 这时弹出方差分析:可重复的双因素分析对话框,如图7-4所示。 ![]() 图7-4 在输入框中指定输入参数。在输入区域框中指定试验数据所在区域A1:D9(通常为了使输出结果容易阅读理解,在原始数据区域中应包含标识行和列的标记信息);在每一样本的行数中键入2(因本例的每种原料有两行数据,即对因素A、B的水平的每对组合进行了t=2次试验);在 ![]() 在输出选项框内指定输出选项。本例选定输出区域,并键入输出区域左上角单元格地址A11。 单击确定按钮。 所得本例的方差分析结果如图7-5所示。 ![]() 图7-5 在图7-5给出的统计结果中,单元格区域A46:E52中的数据正好与表7-2所示的双因素重复试验方差分析表中的各个统计量相对应,其中样本即为行因素A,列即为列因素B,交互即为因素A与B的交互作用,内部即为误差,总计即为总和,差异源即为方差来源,SS即为平方和,df即为自由度,MS即为均方,F即为F比,P-value为接受原假设 ![]() ![]() 根据图7-5给出的方差分析结果可知: 原料因素 ![]() ![]() ![]() 温度因素 ![]() ![]() ![]() 两因素的交互作用 ![]() ![]() ![]() 因此,可以得出这样的结论:在显著性水平0.05下,原料和处理温度这两个因素对产品强度的影响都是显著的,且 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 再如,某林场对果树采用了不同的剪枝方案和施肥方案进行试验(如图7-7所示),观察剪枝和施肥对果树的产量是否有显著影响?两者的交互作用是否显著? 在这里,试验的指标是果树产量,剪枝和施肥是因素,它们分别有3个、4个水平,这也是一个双因素的试验。试验的目的是要考察在各种因素的各个水平下果树产量有无显著的差异。即既要考虑不同的剪枝方案、不同的施肥方案是否对果树产量有显著影响,还要考虑剪枝和施肥两因素各方案的配合对果树产量是否有影响作用。 ![]() 图7-6 ![]() 图7-7 利用Excel 2000提供的方差分析:可重复双因素分析工具,取显著性水平 ![]() 分析图7-8中的结果可知: 剪枝因素 ![]() ![]() ![]() 施肥因素 ![]() ![]() ![]() 两因素的交互作用 ![]() ![]() ![]() ![]() 图7-8 因此,可以得出这样的结论:在显著性水平0.05下,剪枝和施肥都对果树产量有显著的影响,但两者的配合对果树产量无显著作用,即剪枝和施肥间无交互作用。 7.2.2 无重复试验的方差分析在上节的讨论中,考虑了双因素试验中两个因素的交互作用。为要检验交互作用的效应是否显著,对于两个因素的每一组合(![]() ![]() 对于上节观察剪枝和施肥对果树的产量是否有显著影响的例子,通过分析结果知:剪枝和施肥这两个因素的配合对果树产量无显著作用,也就是说剪枝和施肥间无交互作用。对此就可以不考虑交互作用,对于两个因素的每一组合( ![]() 现假设两个因素的无重复试验结果如下表所示。
![]() ![]() ![]() 行因素A的检验(即检验因素A的每个水平 ![]() ![]() ![]() ![]() ![]() ![]() 列因素B的检验(即检验因素B的每个水平 ![]() ![]() ![]() ![]() ![]() ![]() 通过与双因素重复试验的方差分析中的同样讨论,可得双因素无重复试验的方差分析表,如下表所示。
![]() ![]() ![]() ![]() 假设 ![]() ![]() ![]() 通过本章内容的学习,应掌握Excel 2000的单因素方差分析和双因素重复试验方差分析工具,并能熟练地运用于实际工作中。 |
|站长邮箱|小黑屋|手机版|Office中国/Access中国
( 粤ICP备10043721号-1 )
GMT+8, 2025-4-4 09:25 , Processed in 0.072254 second(s), 17 queries .
Powered by Discuz! X3.3
© 2001-2017 Comsenz Inc.