Excel2000 应用案例之二十八
时间:2005-02-18 11:49 来源:Excel Home 作者:admin 阅读:次
7.2 双因素方差分析
如果在一项试验中只有两个因素在改变,而其他因素保持不变,则称为双因素试验。双因素试验的方差分析就是观察两个因素的不同水平对研究对象的影响是否有显著性的差异。根据是否考虑两个因素的交互作用,又将双因素方差分析分为双因素重复试验的方差分析和双因素不重复试验的方差分析。7.2.1 重复试验的方差分析
例如,在生产某种金属材料时,使用了四种原料、三种热处理温度。对于每种原料与每种热处理温度的组合各生产两次,产品强度的测定结果如图7-3所示。问原料、处理温度以及这两者的交互作用对产品强度是否有显著的影响(取显著性水平

图7-3
在这里,试验的指标是产品强度,原料和处理温度是因素,它们分别有4个、3个水平,这是一个双因素的试验。试验的目的是要考察在各种因素的各个水平下产品强度有无显著的差异。即考察原料和处理温度这两个因素对产品强度有无显著影响。这就是一个双因素重复试验方差分析问题。在这种方差分析中,除了考虑两个因素A、B各水平的效应之外,还要考虑A、B各水平的搭配作用即交互作用。也就是说,本例既要考虑不同的原料、不同的处理温度是否对产品强度有显著影响,还要考虑原料和处理温度这两因素各方案的配合对产品强度是否有影响作用。
1. 基本理论
在本例中,有两个因素A(即原料)、B(即处理温度)作用于试验的指标(即产品强度)。行因素A有r(=4)个水平





假设



①提出假设
与单因素方差分析类似,先引入水平








行因素A的检验(即检验因素A的每个水平






列因素B的检验(即检验因素B的每个水平






因素A、B交互作用I=A×B的检验(即检验因素A与因素B搭配的每对组合(






②检验统计量
与单因素方差分析类似,双因素方差分析所需的检验统计量也是从总平方和的分解导出来的。下面先引入



再引入总平方和

总平方和


其中
误差平方和

因素A的效应平方和

因素B的效应平方和

因素A、B的交互效应平方和

可以证明











当



类似地,当




这就是双因素方差分析所需的F检验统计量。
③假设检验的拒绝域
在显著性水平






将上述分析结果汇总成如下表所示的方差分析表。
方差来源 | 平方和 | 自由度 | 均方 | F 比 |
因素A | ![]() |
![]() |
![]() |
![]() |
因素B | ![]() |
![]() |
![]() |
![]() |
交互作用I | ![]() |
![]() |
![]() |
![]() |
误差 | ![]() |
![]() |
![]() |
|
总和 | ![]() |
![]() |
(责任编辑:admin)
顶一下
(0)
0%
踩一下
(0)
0%
最新内容
推荐内容