Excel2000 应用案例之三十
时间:2005-02-18 11:51 来源:Excel Home 作者:admin 阅读:次
第八章 预测分析
[本章提要]本章首先讨论了两种时间序列预测法:移动平均法和指数平滑法。然后介绍了回归分析法,其中包括线性回归法和可以转化为线性处理的非线性回归。预测是指从已知事件测定未知事件。具体地讲,预测就是以准确的调查统计资料和统计数据为依据,从研究现象的历史、现状和规律性出发,运用科学的方法,对研究现象的未来发展前景的测定。预测理论作为通用的方法论,既可以应用于研究自然现象,又可应用于研究社会现象。将预测理论、方法和个别领域现象发展的实际相结合,就产生了预测的各个分支。如社会预测、人口预测、经济预测、政治预测、科技预测、军事预测、气象预测等等。本章主要以经济预测为例来讨论预测技术中最基本、最常用的预测方法及其在Excel 2000中的具体实现。
经济预测的内容十分丰富,常见如某种商品或产品的社会需求预测、市场占有率预测、市场供求预测、库存预测以及企业利润预测、投资效益预测、价格变动预测等等。由于经济系统的复杂性、随机性、动态性、开放性、模糊性以及经济信息的不完善性,使得没有哪种单纯的预测方法能满足一切预测决策工作的需要,所以现在已发展了许多预测方法,不同的预测方法适用于不同的情况。在实际应用中应具体问题具体分析,针对具体问题选择最有效的预测方法来进行预测分析。本章只讨论应用最为广泛的两种时间序列预测法和回归分析预测法。
8.1 时间序列预测法
时间序列是指把历史统计资料按时间顺序排列起来得到的一组数据序列。例如,按月份排列的某种商品的销售量;工农业总产值按年度顺序排列起来的数据序列等等都是时间序列。时间序列一般用 表示,t为时间。时间序列预测法是将预测目标的历史数据按时间的顺序排列成为时间序列,然后分析它随时间的变化趋势,外推预测目标的未来值。也就是说,时间序列预测法将影响预测目标的一切因素都由“时间”综合起来描述。因此,时间序列预测法主要用于分析影响事物的主要因素比较困难或相关变量资料难以得到的情况。
8.1.1 移动平均法
移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。1. 移动平均法的基本理论
①简单移动平均法
设有一时间序列 ,则按数据点的顺序逐点推移求出N个数的平均数,即可得到一次移动平均数:
式中 为第t周期的一次移动平均数; 为第t周期的观测值;N为移动平均的项数,即求每一移动平均数使用的观察值的个数。
这个公式表明当t向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数。由于它不断地“吐故纳新”,逐期向前移动,所以称为移动平均法。
由于移动平均可以平滑数据,消除周期变动和不规则变动的影响,使得长期趋势显示出来,因而可以用于预测。其预测公式为:
即以第t周期的一次移动平均数作为第t+1周期的预测值。
②趋势移动平均法 当时间序列没有明显的趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期的一次移动平均数就可预测第t+1周期之值。但当时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。因此,需要进行修正,修正的方法是在一次移动平均的基础上再做二次移动平均,利用移动平均滞后偏差的规律找出曲线的发展方向和发展趋势,然后才建立直线趋势的预测模型。故称为趋势移动平均法。
设一次移动平均数为 ,则二次移动平均数 的计算公式为:
再设时间序列 从某时期开始具有直线趋势,且认为未来时期亦按此直线趋势变化,则可设此直线趋势预测模型为:
式中t为当前时期数;T为由当前时期数t到预测期的时期数,即t以后模型外推的时间; 为第t+T期的预测值; 为截距; 为斜率。 , 又称为平滑系数。
根据移动平均值可得截距 和斜率 的计算公式为:
在实际应用移动平均法时,移动平均项数N的选择十分关键,它取决于预测目标和实际数据的变化规律。
2. 应用举例
已知某商场1978~1998年的年销售额如下表所示,试预测1999年该商场的年销售额。
年份 | 销售额 | 年份 | 销售额 |
1978 | 32 | 1989 | 76 |
1979 | 41 | 1990 | 73 |
1980 | 48 | 1991 | 79 |
1981 | 53 | 1992 | 84 |
1982 | 51 | 1993 | 86 |
1983 | 58 | 1994 | 87 |
1984 | 57 | 1995 | 92 |
1985 | 64 | 1996 | 95 |
1986 | 69 | 1997 | 101 |
1987 | 67 | 1998 | 107 |
1988 | 69 |
选择工具菜单中的数据分析命令,此时弹出数据分析对话框。
在分析工具列表框中,选择移动平均工具。
这时将弹出移动平均对话框,如图8-1所示。
在输入框中指定输入参数。在输入区域框中指定统计数据所在区域B1:B22;因指定的输入区域包含标志行,所以选中标志位于第一行复选框;在间隔框内键入移动平均的项数5(根据数据的变化规律,本例选取移动平均项数N=5)。
在输出选项框内指定输出选项。可以选择输出到当前工作表的某个单元格区域、新工作表或是新工作簿。本例选定输出区域,并键入输出区域左上角单元格地址C2;选中图表输出复选框。若需要输出实际值与一次移动平均值之差,还可以选中标准误差复选框。
单击确定按钮。
这时,Excel给出一次移动平均的计算结果及实际值与一次移动平均值的曲线图,如图8-2所示。
图8-1
图8-2
从图8-2可以看出,该商场的年销售额具有明显的线性增长趋势。因此要进行预测,还必须先作二次移动平均,再建立直线趋势的预测模型。而利用Excel 2000提供的移动平均工具只能作一次移动平均,所以在一次移动平均的基础上再进行移动平均即可。二次移动平均的方法同上,求出的二次移动平均值及实际值与二次移动平均值的拟合曲线,如图8-3所示。
再利用前面所讲的截距 和斜率 计算公式可得:
图8-3 于是可得t=21时的直线趋势预测模型为:
预测1999年该商场的年销售额为:
(责任编辑:admin)
顶一下
(0)
0%
踩一下
(0)
0%
最新内容
推荐内容